Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

نویسندگان

  • P. Fleming
  • J. W. van Wingerden
  • Alan D. Wright
  • Paul Fleming
  • Jan-Willem van Wingerden
چکیده

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3. The advanced state-space controller uses independent blade pitch to mitigate the effects of shear across the rotor disk, and a collective pitch component to add active damping to the tower’s first fore-aft bending mode, and, to regulate turbine speed. In addition, a separate generator torque control loop adds active damping to the tower’s first side-side mode and the first drivetrain-torsion mode. In this paper we show a refinement to the generator torque control loop to account for actuator delay. We discovered a delay in actuation between commanded generator torque and the torque actually applied to the highspeed shaft. If this delay is not properly accounted for in the plant model used for control design, the generator torque control loop tends to destabilize the first drivetrain torsion mode. We show modifications to the torque control loop to account for this delay, and, to prevent unnecessary control actuation at certain harmonics in the rotorspeed. We present field tests of this controller and make comparisons with a simple PID baseline controller for the 2-bladed Controls Advanced Research Turbine (CART2) located at NREL’s National Wind Technology Center † Senior Engineer II, National Wind Technology Center, 1617 Cole Blvd., Mailstop 3811, AIAA member ‡ Engineer III, National Wind Technology Center, 1617 Cole Blvd., Mailstop 3811, AIAA member € Employees of the Alliance for Sustainable Energy, LLC, under Contract No. DE-AC36-08GO28308 with the U.S. Dept. of Energy have authored this work. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. €€ Assistant Professor, Delft Center for Systems and Control, 2628 CD, Delft, AIAA nonmember

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind tur...

متن کامل

Baseline Results and Future Plans for the NREL Controls Advanced Research Turbine: Preprint

The National Renewable Energy Laboratory (NREL) has commissioned a highly modified Westinghouse 600 kW wind turbine as its Controls Advanced Research Turbine (CART). The capabilities of the original turbine have been increased through the installation of a high-speed data-acquisition and control system, a widebandwidth variable-speed generation system, and a high-speed independent blade pitch s...

متن کامل

Subspace-Based Identification Techniques for a ‘Smart’ Wind Turbine Rotor Blade: A Study Towards Adaptive Data-Driven Control

More cost-effective wind turbines with higher rated power, are desired to emerge in the near future. The current trend in wind energy is for this reason the increase of the wind turbine dimensions. Increasing their size is however strongly limited by the rotor blades structural integrity towards occurring aeroelastic loads, especially with respect to blade fatigue. Advanced (re)active load redu...

متن کامل

An investigation on fatigue failure of turbine blades of aircraft engines by high cycles fatigue test

Thermal stress, wear and material damage produce effects of high-cycle fatigue failures in aircraft engines. The loading configuration on turbine blades of aircraft engines consists of an axial load. The axial load is the centrifugal force combined with the tensile and compressive loads, caused by the natural vibrations of the blades themselves. Low-cycle fatigue and high-cycle fatigue loading ...

متن کامل

Individual Blade Pitch Control of a Floating Offshore Wind Turbine on a Tension Leg Platform

A disturbance accommodating controller (DAC) to reject wind speed perturbations is applied on a 5MW wind turbine mounted on a tension leg platform (TLP). Multi-blade coordinate (MBC) transformation is used to address the periodicity of the floating wind turbine system. A method to apply DAC after applying MBC transformation is developed and several implementation options are presented. Simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011